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ABSTRACT

Multiple Object Tracking (MOT) has a wide range of appli-
cations in surveillance retrieval and autonomous driving. The
majority of existing methods focus on extracting features by
deep learning and hand-crafted optimizing bipartite graph or
network flow. In this paper, we proposed an efficient end-to-
end model, Deep Association Network (DAN), to learn the
graph-based training data, which are constructed by spatial-
temporal interaction of objects. DAN combines Convolutional
Neural Network (CNN), Motion Encoder (ME) and Graph
Neural Network (GNN). The CNNs and Motion Encoders
extract appearance features from bounding box images and
motion features from positions respectively, and then the
GNN optimizes graph structure to associate the same object
among frames together. In addition, we presented a novel end-
to-end training strategy for Deep Association Network. Our
experimental results demonstrate the effectiveness of DAN
up to the state-of-the-art methods without extra-dataset on
MOT16 and DukeMTMCT.
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Figure 1: Deep Association Network for Multiple Ob-
ject Tracking

1 INTRODUCTION

Multiple Object Tracking (MOT) is one of the significant
components in computer vision, such as video surveillance
retrieval, scene understanding and autonomous driving. MOT
task is a process of acquiring trajectories, which identifies each
individual object and associates them as several contiguous
tracklets in a video sequence. The tracking results obtained
by the tracker can be used for action recognition or retrieval
information supplement. However, MOT is still a developable
problem due to the negative influence of occlusion, scene
complexity and indistinguishable objects.

Tracking-by-detection is a dominant solutions of MOT,
which compares the similarity of each object within the inter-
frames of the video on account of the general characteristic of
the same individual. Tracking-by-detection usually depends
on the bounding boxes detected by detector in every-frame or
some of the frame. Therefore the current approaches extract
the bounding boxes’ features (e.g. appearance, motion and
interactions) to associate each object in sequence.
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Data Association is the fundamental of the MOT frame-
work, which is generally divided into feature extraction and
graph optimization. Feature extraction aims to describe ef-
fective information of bounding boxes, which include object
colors, textures, positions, boundaries, etc. Traditional meth-
ods tend to extract hand-crafted features and keypoints.

Recently, some deep neural network such as Convolutional
Neural Network (CNN) has gradually replaced conventional
approaches mentioned before because of their excellent perfor-
mance on feature extraction. Each bounding box is regarded
as a node on the graph, while the similarity of nodes com-
puted by features represents edge weight between nodes.
Then these nodes and edges compose a Bipartite Graph for
online tracking or Network Flow for offline tracking. Graph
optimization focuses on connecting and eliminating the edge
of graph so that each sub-graph is the same individual. How-
ever, the graph optimization on MOT has not relied on
deep learning and continues to utilize the traditional solu-
tion such as Hungarian Algorithm [31]. Although the perfor-
mance is gradually improving at the MOT Challenges [26]
and DukeMTMCT [27], so far feature extraction and graph
optimization are still independent tasks, They still havent
been combined as an end-to-end model to be trained to-
gether, which causes the model not to learn the interaction
of nodes and also reduces the processing efficiency due to
data transmission.

In this paper, we address a distinctive MOT framework,
Deep Association Network (as illustrated in Figure 1) and
corresponding end-to-end graph-based training strategy. In
the first half of the framework we still utilize CNN to ex-
tract features, while in the second half Graph Neural Network
(GNN) replaces hand-crafted algorithm to optimize the graph.
GNN has the ability to learn the interaction and relationship
between nodes through a large amount of data. The advan-
tage of GNN is that it can input arbitrary graph structures.
Through specific loss function and large-scale tracking train-
ing data, GNN propagates node features on graph structures,
ultimately nodes which belong to the same individual tend to
be together. Besides, we design a Motion Encoder to describe
the bounding box information such as position, size and
shape. We connect three parts sequentially for end-to-end
learning. Our contributions of the framework are as follows:

∙ End-to-end MOT model framework: We firstly present
a end-to-end model which combines CNN, Motion En-
coder and GNN. CNN and Motion Encoder are used for
extracting appearance and motion features of bounding
box respectively, and GNN optimizes each graph.

∙ Novel Training Strategy: We design graph dataset for
training DAN. Each epoch includes several graphs con-
structed by bounding boxes, and the ground truth
relationship of every node is utilized for supervising
DAN.

∙ Developable MOT baseline: Deep Association Network
is an unprecedented model structure for multiple object
tracking, therefore DAN is worth continuing to explore
and research how to improve the performance of MOT.

2 RELATED WORK

Multiple Object Tracking has attracted people’s attention.
An increasing number of researchers participate in this field.
The performance of MOT improves gradually at the MOT
benchmark[26].
For Multiple Object Tracking: Tracking-by-detection
has become one of the most popular tracking frameworks.
Among the methods of MOT, [5, 6, 14, 16, 36, 40] designed
an ingenious data association or multiple hypothesis. [32]
firstly combined feature extraction part and hand-crafted
graph structure to learn together. [20, 24] presented net-
work flow and graph optimization which are powerful ap-
proaches. [30, 36, 42] train the CNN on the basis of person
re-identification to extract the image features, and [35] uti-
lizes the quadruplet loss to enhance the feature expression. [7]
builds the CNN model to generate visibility maps to solve the
occlusion problem. In addition, [14] uses a novel multi-object
tracking formulation to incorporate several detector into a
tracking system. [16] extends the multiple hypothesis by en-
hancing the detection model. [23] addressed a sophisticated
model to process trajectories. [11, 48] proposed spatial and
temporal attention mechanisms to enhance the performance
of MOT. The motion model is divided into linear position
prediction [35] and non-linear position prediction [8]. [15]
designs the structural constraint by the location of people to
optimize assignment. Following the success of RNN models
for sequence prediction tasks, [2] proposes social-LSTM to
predict the position of each person in the scene.
For Graph Neural Network: GNN was previously applies
to Natural Language Programming (NLP), physical simu-
lation and etc. For instance, [3] summarized the principle
and application of GNN. [19, 21, 38] respectively proposed
the GNN variant structure, GGSNN (Gated Graph Sequence
Neural Network), GCN (Graph Convolutional Network) and
GAT (Graph Attention Network). [9] focuses on molecule fea-
ture descriptor, and each molecule is composed by atoms as
the graph structure. [18] aims to research physical simulation
by GNN, more specifically the interaction of dynamical parti-
cles system, meanwhile they realized NBA player trajectories
prediction. Recently, GNN has been utilized for computer vi-
sion. GNN-based few-shot transfer learning presented by [12],
and polygon refinement for instance segmentation addressed
by [1]. [41] adopted spatial-temporal skeleton graph for action
recognition, and [33] constructed relationship graph to train
re-identification model.

3 DEEP ASSOCIATION FRAMEWORK

The major applications of MOT focus on pedestrian tracking,
whose purpose is to estimate the locations of each person
at different times in the video. Most methods have taken
advantage of diversified cues to improve tracking precision.
On this basis, we propose an end-to-end training framework,
Deep Association Netowrk (DAN), which combines multiple
cues (Appearance feature, Motion Position and Interaction)
to co-learn the behavioral pattern of inter-individual. In this
Section, our model pipeline skeleton and the definition of
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Figure 2: The Framework of Deep Association Network

our tasks are described in Sec.3.1. The details of feature
extraction are introduced in Sec.3.2. We demonstrate how to
construct graph in Sec.3.3. Lastly Sec.3.4 gives the strategy
for training GNN.

3.1 Deep Association Pipeline

The traditional MOT frameworks are based on tracking-by-
detection strategy, which associate bounding boxes by ap-
pearance feature, motion prediction and association optimiza-
tion (Network Flow [32], Hungarian Algorithm [31]). In our
framework, Deep Association Newtork (DAN) is composed of
Convolutional Neural Network (CNN), Motion Encoder (ME)
and Graph Neural Network (GNN) (as described in Figure
2). Firstly, we treat the bounding boxes as nodes, which are
located by detection model frame by frame. CNN is applied
to extract appearance features from images in bounding box,
meanwhile ME is utilized for encoding corresponding bound-
ing boxes’ information, which contains position, width, height
and velocity of the bounding box as the motion features. We
build an adjacency matrix according to the spatial-temporal
cues of bounding boxes to represent the graph structure of
the relationship between nodes. The adjacent matrix and
concatenations of appearance and motion features are feed
into GNN. GNN propagates node features each other on
graph structure and learns the relationship between nodes.
Finally, the nodes feature is projected on high-dimensional
space. The features in the same aggregation range can be
treated as the same person, which are sequentially linked on
the timeline to form a complete trajectory.

We formulate the near-online tracking problem as the
local bounding boxes association task between tracked can-
didate results and current detection results within video
fragment. we define the set of 𝑡-th to (𝑡 + 𝜂)-th frames

detection results as 𝒟𝑡 (𝑑𝑘𝑡 ∈ 𝒟𝑡), 𝜂 is the width of sub-
sequence on video, and the set of the first 𝑡-th frames tracked
candidate results as 𝒞𝑡 (𝑐𝑘𝑛 ∈ 𝒞𝑡;𝑛 ≤ 𝑡, 𝒞𝑡 = 𝒞𝑡−1

⋃︀
𝒟𝑡−1),

where 𝑑𝑘𝑡 and 𝑐𝑘𝑡 are 𝑘-th detection and candidate in frame
𝑡, respectively. Bounding boxes association can be perceived
as graph optimization. Therefore, we construct a global
graph structure 𝒢(𝐺𝑡 ∈ 𝒢, 𝐺𝑡 = (𝒱𝑡, ℰ𝑡)), the global graph
𝒢 = {𝐺1, 𝐺1+𝛿, 𝐺1+2𝛿..., 𝐺𝐿} consists of several local graphs,
where 𝐺𝑡 is the local graph constructed from video frag-
ment of 𝑡-th to (𝑡 + 𝜂)-th frames, 𝛿 is the stride of video
fragment on timeline, 𝐿 is the total length of the video, 𝒱𝑡

(𝑣𝑘𝜉 ∈ 𝒱𝑡, 𝜉 ∈ [𝑡, 𝑡+𝜂],𝒱𝑡 = 𝒞𝑡∪𝒟𝑡) indicates the set of nodes,

each node stands for a bounding box and 𝑣𝑘𝜉 denotes the
𝑘-th node in frame 𝜉, and nodes are defined as 7 dimensions
[𝑡, 𝑖𝑑, 𝑥, 𝑦, 𝑤, ℎ, 𝑠] that contain the tracklet id by tracker, the
object time, the center position (𝑥, 𝑦), width and height of
the bounding box, and the statement of node (“Unallocated”,

“Tracked”, “Lost”, “Quitted”). 𝑒𝑖𝑗𝑡 ∈ ℰ𝑡 is the edge between

𝑣𝑖𝑡 and 𝑣𝑗𝑡 on 𝐺𝑡. The formulation of optimized graph is given
by

𝑎𝑟𝑔𝑚𝑖𝑛(
∑︁
𝐺𝑡∈𝒢

𝐹𝑆(𝑣
𝑖
𝑡, 𝑣

𝑗
𝑡 )𝑒

𝑖𝑗
𝑡 +

∑︁
𝐺𝑡1

,𝐺𝑡2
∈𝒢

𝐹𝑆(𝑣
𝑖
𝑡1 , 𝑣

𝑗
𝑡2
)𝑒𝑖𝑗𝑡 )

𝑠.𝑡. 𝐺𝑡1 ∩𝐺𝑡2 ̸= ∅
(1)

where 𝐹𝑆(𝑣
𝑖
𝑡, 𝑣

𝑗
𝑡 ) measures the similarity between nodes,

𝑒𝑖𝑗𝑡 ∈ {0, 1} indicates whether two nodes, 𝑣𝑖𝑡 and 𝑣𝑗𝑡 , are con-
nected on graph 𝐺𝑡. Eq.1 includes local graph optimization
and inter-graph optimization. The goal of local graph opti-
mization is to associate the nodes in batch, and the purpose of
the inter-graph optimization aims to connect the cross-nodes
between batches.
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Figure 3: Illustration of the Graph Construction.

3.2 Feature Extraction

Feature Extraction is used to describe the characteristics of
the individual and distinguish the differences between the
nodes (bounding boxes). For the same individual in different
time, it has the similar features for a period of time such
as wearing, position, body size and velocity. These cues are
totally summarized as two parts: appearance features and
motion features. In our framework, the appearance features
are extracted by several shared-weight CNNs, and the motion
features are encoded by fully-connected networks.

Appearance model extracts the pedestrian features (e.g.
color, shape and texture) from each bounding box located by
detection model. we treats the appearance model as a person
re-identification (Re-ID) task initially to obtain the pre-train
model for CNNs on DAN. We combine the three public Re-
ID datasets (Market1501 [45], DukeMTMC-ReID [46] and
CUHK03 [47]) to train the homostructural CNNs model as
DAN. 𝑓 𝑖

𝑎,𝑡 and 𝑓 𝑖
𝑐𝑙𝑠,𝑡 indicate the output of CNN’s appearance

feature and classification vector respectively for node 𝑣𝑖𝑡, the
𝑓 𝑖
𝑎,𝑡 is the k-dimensional vector, and the 𝑓 𝑖

𝑐𝑙𝑠,𝑡 is mapped to

the n-dimensional vector by fully-connected layer from 𝑓 𝑖
𝑎,𝑡,

n denotes the training set classes number. 𝐹𝑎(*) represents
the model forward function of appearance model

𝑓 𝑖
𝑐𝑙𝑠,𝑡, 𝑓

𝑖
𝑎,𝑡 = 𝐹𝐴(𝐼

𝑖
𝑡) (2)

where 𝐼𝑖𝑡 indicates the croped image of the node 𝑣𝑖𝑡. We use
the cross-entropy loss ℒ𝑐𝑙𝑠(*) in the multi-classification task
for identification:

ℒ𝑐𝑙𝑠(𝑓
𝑖
𝑐𝑙𝑠,𝑡) =

𝐾∑︁
𝑖=1

−𝑝𝑖𝑡𝑙𝑜𝑔(𝑝
𝑖
𝑡), 𝑝𝑖𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓 𝑖

𝑐𝑙𝑠,𝑡) (3)

When the identification loss tends to convergence, all of
the parameters will be loaded into CNNs from DAN as the
pre-train model.

Motion Encoder is utilized for encoding the bounding
boxes’ information(position and shape). The ME model
projects the 4 dimensional vector into a m-dimensional vec-
tor by fully-connected network, and 𝑓 𝑖

𝑚,𝑡 denotes the motion

feature for node 𝑣𝑖𝑡, 𝐹𝑀 (*) is the model forward function of
motion model:

𝑓 𝑖
𝑚,𝑡 = 𝐹𝑀 (𝐵𝑖

𝑡) (4)

where 𝐵𝑖
𝑡 is the bounding box information [𝑥𝑖

𝑡, 𝑦
𝑖
𝑡, 𝑤

𝑖
𝑡, ℎ

𝑖
𝑡] of

𝑣𝑖𝑡. We concatenate the appearance feature 𝑓 𝑖
𝑎,𝑡 and motion

feature 𝑓 𝑖
𝑚,𝑡 together as the node representation to feed into

GNN.

3.3 Graph Construction

Before feeding into GNN, we transform the video sequence
information into the input standardization formats of GNN.
The graph structure consists of nodes and edges represented
as 𝐺 = (𝒱, ℰ) (mentioned in Sec 3.1), where the nodes 𝑣 ∈ 𝒱
represent the bounding boxes from frames images, and the
edges 𝑒 ∈ ℰ denote the spatial-temporal relationship between
nodes. The graph construction is described in Figure 3. We
divide the whole video sequence into several video fragments
(sub-sequence). 𝜂 is the length of video fragments, for instance
in order to generate the graph 𝐺𝑡, we firstly extract the 𝑡-th
frame to the (𝑡+𝜂)-th frame images and select nodes from sub-
sequence in terms of the node statement. The statement of
the node can be divide into “Tracked”, “Lost”, “Unallocated”,
and “Quitted”. The nodes that have already been allocated
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and are not the tail of the tracklet are treated as ”Tracked”
nodes. All tails of the tracklet nodes belong to “Lost” nodes
(e.g. 𝒞𝑡 includes all of the [𝑡, 𝑡+ 𝜂]-th frames lost nodes), and
the fresh nodes which haven’t been allocated are regarded as
“Unallocated” nodes (e.g. 𝒟𝑡 includes all of the [𝑡, 𝑡+ 𝜂]-th
frames unallocated nodes). If the tracklet ultimately walks
out of the image boundary, all of its nodes are classified as
“Quitted”. Two types of nodes, “Lost” and “Unallocated”,
are used for construct the graph structure. We calculate the
node’s bounding boxes IoU (Intersection over Union) between
adjacent frames, and the edge weight is proportional to IoU
value and inverse correlation to the frame interval. The edge
weight 𝑒𝜀𝑖,𝜉𝑗 of graph 𝐺𝑡 between 𝐵𝑖

𝜀 and 𝐵𝑗
𝜉 is defined as:

𝑒𝜀𝑖,𝜉𝑗 = 𝐼𝑜𝑈(𝐵𝑖
𝜀, 𝐵

𝑗
𝜉) * (1− 𝜇 *𝑚𝑖𝑛(𝑎𝑏𝑠(𝜀− 𝜉), 𝜆))

𝑠.𝑡. 𝜀, 𝜉 ∈ [𝑡, 𝑡+ 𝜂], 𝜀 < 𝜉, 𝜇, 𝜆 > 0
(5)

where

𝐼𝑜𝑈(𝐵𝑖
𝜀, 𝐵

𝑗
𝜉) =

𝑎𝑟𝑒𝑎(𝐵𝑖
𝜀 ∩𝐵𝑗

𝜉)

𝑎𝑟𝑒𝑎(𝐵𝑖
𝜀 ∪𝐵𝑗

𝜉)
(6)

where constant 𝜇 is used for adjusting the influence of frame
interval on edge weight, and constant 𝜆 is the upper limit of
frame interval. The representation of graph 𝐺𝑡 includes ad-
jacent matrix 𝐴𝑡 ∈ R𝑁*𝑁 , 𝐴𝑡[𝑖, 𝑗] = 𝑒𝑖,𝑗 and features matrix

𝑋𝑡 ∈ R𝑁*(𝑛+𝑚), 𝑋𝑡[𝑖] = [𝑓 𝑖
𝑎, 𝑓

𝑖
𝑚], where N is the number of

nodes in sub-sequence, each raw of 𝑋𝑡 is the concatenation
of appearance feature 𝑓𝑎 and motion feature 𝑓𝑚.

3.4 Graph Optimization by GNN

Graph Neural Network (GNN) aims to learn the topology
data pattern and represent the graph structure feature, which
encodes the node features and updates the representation
vector from neighborhood the other nodes aggregation on the
graph. Better than CNN and RNN, GNN has more significant
effects on the graph structure based task, such as molecules
classification and particles interaction simulation.

The target of multiple object tracking task is to local every
pedestrians position at each moment. So we associate the
node ID and connect the nodes which belong to the same
person as the tracking result. The MOT method address this
problem by Data Association, which involves network flow,
graph-cut and feature clustering, so GNN is able to optimize
the graph nodes feature and edge weights between nodes.
we adopt the Graph Convolutional Network (GCN) [19] as
the network backbone. The adjacent matrix 𝐴𝑡 and features
matrix 𝑋𝑡 are denoted as the GCN input, and the GCN

outputs include updated 𝐴𝑡 and 𝑋𝑡. 𝐹𝐺(*) indicates the
model forward function of GCN:

𝐴, 𝑋̂ = 𝐹𝐺(𝐴,𝑋) (7)

The internal implementation of GCN network is defined as:

𝑋̂ = 𝑅𝑒𝐿𝑈(Γ̃− 1
2𝐴Γ̃− 1

2𝑋Θ) (8)

𝐴 = 𝐴+Ψ𝑁 , Γ̃[𝑖, 𝑖] =
∑︁
𝑗

𝐴[𝑖, 𝑗] (9)

GNN

   Croped Images 
 Motion
Encoder

     Graph
Construction

FC layer

 Concatenation

CNN

X

A

Cross-Entropy Loss

Graph
  Loss

X
A

Figure 4: The explanation of DAN training and Loss
Function.

Ψ𝑁 is the identity self-connections matrix, and the 𝐴 is
the combination of adjacency matrix and self-connections. Γ̃
indicates a degree matrix of graph 𝐺, and Θ ∈ R(𝑛+𝑚)*𝑝 is a
learnable parameters on GCN, and feature matrix 𝑋̃ ∈ R𝑁*𝑝

denotes one of the GCN output. The updated adjacency

matrix 𝐴 ∈ R𝑁*𝑁 is given by:

𝐴 =
(𝑛𝑜𝑟𝑚(𝑋̂) * 𝑛𝑜𝑟𝑚(𝑋̂)𝑇 ) + 1

2
, 𝑛𝑜𝑟𝑚(𝑋̂) =

𝑋̂

|𝑋̂|
(10)

where 𝐴[𝑖, 𝑗] indicates the cosine distance between node fea-

tures 𝑋̂[𝑖] and 𝑋̂[𝑗], and we normalize the features to [0, 1].
The multi-layers GCN feedward function is shown as:

𝐴1, 𝑋1 = 𝐹𝐺1(𝐴,𝑋) (11)

𝐴𝜁 , 𝑋𝜁 = 𝐹𝐺𝜁−1(
ˆ𝐴𝜁−1, ˆ𝑋𝜁−1), 𝜁 > 1 (12)

Finally, to train the DAN, we design a Graph Loss ℒ𝐺(*),
which is defined as:

ℒ𝐺(𝐴𝜁 , 𝐺
𝑔𝑡
𝑡 ) =

∑︁
𝑒
𝑔𝑡
𝑖𝑗 ∈ℰ𝑔𝑡

𝑡

(𝑒𝑔𝑡𝑖𝑗 − 𝑒𝑖𝑗) +
∑︁

𝑒
𝑔𝑡
𝑖𝑗 /∈ℰ𝑔𝑡

𝑡

𝜎 * (𝑒𝑖𝑗 − 𝑒𝑔𝑡𝑖𝑗 ) (13)

where 𝐺𝑔𝑡
𝑡 is the ground truth graph structure which is com-

puted previously, 𝐺𝑔𝑡
𝑡 = (𝒱𝑔𝑡

𝑡 , ℰ𝑔𝑡
𝑡 ), 𝑒𝑔𝑡𝑖𝑗 ∈ ℰ𝑔𝑡

𝑡 , 𝑒𝑔𝑡𝑖𝑗 = {0, 1} ,
and 𝜎 is the loss weight of Graph Loss. The total loss ℒ of
the training DAN includes cross-entropy loss ℒ𝑐𝑙𝑠 for appear-
ance model and graph loss ℒ𝐺 for motion encoder and GCN:
ℒ = ℒ𝑐𝑙𝑠 + ℒ𝐺 (described in Figure 4).

4 EXPERIMENTS

4.1 MOT Datasets

To train the DAN, we prepare the training dataset MOT16 [26]
and DukeMTMCT [27] which contain the ground truth loca-
tion of each frame bounding box by annotator.

DukeMTMCT is a large scale dataset for multiple cam-
era multiple object tracking, which the videos captured by
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Table 1: Results on the DukeMTMCT test dataset

Tracker MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDSw.↓ Frag↓
PT BIPCC [25] 59.3 71.2 666 234 71381 361673 298 799

BIPCC [28] 59.4 70.1 665 234 68634 361589 290 783
MTMC ReIDp [44] 70.7 79.2 726 143 52408 277762 449 1060

MTMC CDSC [37] 70.9 77.0 740 110 38655 268398 693 4717
MYTRACKER [43] 73.8 80.3 914 72 35580 193253 406 1116

TAREIDMTMC [5] 83.3 83.8 1051 17 44691 131220 383 2428

DeepCC [29] 87.5 89.2 1103 29 37280 94399 202 753

DAN(Ours) 86.7 82.0 1088 9 37073 102930 928 4357

Table 2: Results on the MOT16 test dataset

Tracker MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDSw.↓ Frag↓
QuadMOT16 [35] 44.1 38.3 14.6% 44.9% 6388 94775 745 1096

EDMT [5] 45.3 47.9 17.0% 39.9% 11122 87890 639 946
MHT DAM [16] 45.8 46.1 16.2% 43.2% 6412 91758 590 781

STAM16 [7] 46.0 50.0 14.6% 43.6% 6895 91117 473 1422

NOMT [6] 46.4 53.3 18.3% 41.4% 9753 87565 359 504
AMIR [30] 47.2 46.3 14.0% 41.6% 2681 92856 774 1675

NLLMPa [39] 47.6 47.3 17.0% 40.4% 5844 89093 629 768
MOTDT [22] 47.6 50.9 15.2% 38.3% 9253 85431 792 1858

FWT [13] 47.8 44.3 19.1% 38.2% 8886 85487 852 1534

GCRA [23] 48.2 48.6 12.9% 41.1% 5104 88586 821 1117
TLMHT [34] 48.7 55.3 15.7% 44.5% 6632 86504 413 642

LMP [36] 48.8 51.3 18.2% 40.1% 6654 86245 481 595

DAN(Ours) 48.6 49.3 13.2% 43.5% 5854 87260 594 806

8 surveillance cameras at different viewing angles include
2800 identities (person) on the Duke University . The video
duration of each camera is 86 minutes, which is splited into
training set (0-50 min) and testing set (50-86 min). In ad-
dition, the dataset provided DPM [10] and Openpose [27]
detection results for each frame as the tracker input.

MOT16 is a classical evaluation dataset comparing sev-
eral tracking methods on MOT Challenge, which include 14
sequences captured from surveillance, hand-held shooting
and driving recorder by static camera and moving camera.
The length of each video is about 500-1500 frames. And the
dataset also provides the detections DPM.

4.2 DAN training Strategy

To train the DAN, we firstly divide training sequence into
many shot sub-sequence, and the length of each sub-sequence
is about 20-30 frames. If every frame includes 15-20 pedes-
trians, we obtain 300-600 nodes in total from sub-sequence
and construct them as the graph. For the whole sequence,
we can get about 2k-10k graphs, and the number of graph
depends on sub-sequence length and sample stride length.
And we shuffle these graphs for each epoch, and our exper-
iment implements on the Pytorch framework by 4 Nvidia
Titan X GPUs, and device 0,1,2 are used for loading the
CNN model to extract appearance features, and then the
features transfers to device 3 to calculate motion encoder
and GCN model. The processing of network feedward and
backward are shown as Algorithm 1.

Algorithm 1: Training Deep Association Network

Input: 𝒢 = {𝐺1, 𝐺1+𝛿, 𝐺1+2𝛿..., 𝐺𝐿}, 𝐺𝑡 = {𝐼𝑡, 𝐴𝑡, 𝐵𝑡}
Output: 𝐹𝐴, 𝐹𝑀 , 𝐹𝐺 𝑚𝑜𝑑𝑒𝑙 𝑤𝑒𝑖𝑔ℎ𝑡

1 for 𝑒𝑝𝑜𝑐ℎ = 1 : 𝑚𝑎𝑥 𝑒𝑝𝑜𝑐ℎ do
2 𝒢′= shuffle(𝒢);
3 for 𝐼𝑖𝑡 , 𝐴𝑡, 𝐵𝑡, 𝑓

𝑔𝑡
𝑐𝑙𝑠,𝑡, 𝐺

𝑔𝑡
𝑡 in 𝒢′ do

4 𝑓𝑐𝑙𝑠,𝑡, 𝑓𝑎,𝑡 = 𝐹𝐴(𝐼𝑡);

5 𝑓𝑚,𝑡 = 𝐹𝑀 (𝐵𝑡);

6 𝑋𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒[𝑓𝑎,𝑡, 𝑓𝑚,𝑡];

7 𝐴𝑡, 𝑋𝑡 = 𝐹𝐺(𝐴𝑡, 𝑋𝑡);

8 𝑐𝑙𝑠 𝑙𝑜𝑠𝑠 = ℒ𝑐𝑙𝑠(𝑓
𝑖
𝑐𝑙𝑠,𝑡, 𝑓

𝑔𝑡
𝑐𝑙𝑠,𝑡);

9 𝑔𝑟𝑎𝑝ℎ 𝑙𝑜𝑠𝑠 = ℒ𝐺(𝐴𝑡, 𝐺
𝑔𝑡
𝑡 );

10 𝑐𝑛𝑛 𝑙𝑜𝑠𝑠 = 𝑐𝑙𝑠 𝑙𝑜𝑠𝑠+ 𝑔𝑟𝑎𝑝ℎ 𝑙𝑜𝑠𝑠;

11 𝐹𝐴.𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑐𝑛𝑛 𝑙𝑜𝑠𝑠, 𝑙𝑟1);

12 𝐹𝑀 .𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑔𝑟𝑎𝑝ℎ 𝑙𝑜𝑠𝑠, 𝑙𝑟2);

13 𝐹𝐺.𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑔𝑟𝑎𝑝ℎ 𝑙𝑜𝑠𝑠, 𝑙𝑟3);

14 Return: 𝐹𝐴, 𝐹𝑀 , 𝐹𝐺

4.3 Implementation Details

In out experiments, DAN consists of CNN, ME and GNN. The
training set graph size is restricted to 64-512 nodes per graph,
the length of sub-sequence 𝜂 is 30 frames, and the stride of
sequence 𝛿 is 20. For each step of epoch, we replace data batch
size with graph size to feed CNN model. We train the CNN
model as appearance model with ResNet-50, and the images
are resized to 256 × 256 from croped images and the outputs

Long Presentation Session 4: Multimedia Object Tracking ICMR ’19, June 10–13, 2019, Ottawa, ON, Canada

258



46

1

2

8

5
36

7

4

1

3

7

8

2

5

DukeMTMCT Testing Set

MOT16 Testing Set

Figure 5: The visualization result on DukeMTMCT and MOT16/17

of CNN produces appearance feature 𝑓𝑎,𝑡, a 2048-dimensional
vector to describe image. Motion Encoder (ME) is composed
by 2-layers fully-connected network, batch-normalization and
ReLU. Bounding box information [x,t,w,h], a 4-dimensional
vector is raised to 4 → 64 → 512 dimensional vector finally
by ME. For graph construction, the frame interval impact
factor 𝜇 is 0.08 and the upper limit constant 𝜆 is 10. The
input of GCN is a N × 2560-dimensional vector, where N is
the number of nodes on graph, and we adopt a two-layers
GCN and the graph loss weight 𝜎 is 2. The training optimizer
is the AdamOptimizer [17], and initially learning rate is set
to 0.001. The model converges finally at the 150th epoch.

4.4 MOT Evaluation Metrics

The MOT Challenge Benchmark adopted the standard met-
rics [4] [28] for evaluation MOT performance. The main
metrics for MOT are MOTA and IDF1. MOTA (Multiple
Object Tracking Accuracy) measures the effect of tracking
for each tracklet, which depends on False Positives (FP),
False Negatives (FN) and Id Switches (IDSw). The IDF1 (ID
F1 Score) is the ratio of correctly identified detection over
the average number of true and computed detections. Mostly
tracked targets (MT), Mostly lost targets (ML) and the total
number of Fragment (Frag) are used for evaluating tracklets
integrity as the reference indexes.

Long Presentation Session 4: Multimedia Object Tracking ICMR ’19, June 10–13, 2019, Ottawa, ON, Canada

259



4.5 Trackers Results Comparison

Here we present our results on the MOT Challenge testing set,
and compare our method with the best published results on
the benchmark. The trackers results comparison on MOT16
and DukeMTMCT are shown in Table 1 and Table 2. Com-
pared with the previous result, the MOTA performance of our
proposal on the MOT16 rank 3, however the TLMHT [34]
method includes post-processing to associate trajectories.
LMP [36] adopts the person keypoints to extract features in
detail. And the other reason is the MOT16 detection results
provided by Benchmark exists the false or incorrect-position
bounding boxes, but our proposal is base on the accurate
bounding boxes to train the model. On DukeMTMCT, we
improve MOTA by 3.4%, and for MT, ML and FN, we also
achieve the preferable performance on Benchmark.

5 CONCLUSION

We propose a novel network framework for MOT, which is
combined CNN, ME and GNN. CNN and ME are utilized
for extracting with node features and GNN optimizes graph.
Compared with existing methods, the approach is a bold
attempt to end-to-end training network on MOT task as
developable baseline in the future. The algorithm achieves
MOTA up to 48.2, 86.7 and IDF1 up to 48.6, 82.0 on MOT16
and DukeMTMCT respectively that approaches the state-of-
the-art methods. The visualization MOT results are shown
in Figure 5. Currently, our proposal still hasn’t done the
excellent effect on occlusion and moving camera. As for future
work, we will continue to explore the principle of GNN and
improve the performance of DAN.
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Konrad Schindler. 2016. MOT16: A Benchmark for Multi-Object
Tracking. CoRR abs/1603.00831 (2016). arXiv:1603.00831 http:
//arxiv.org/abs/1603.00831

[27] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and
Carlo Tomasi. 2016. Performance Measures and a Data Set for
Multi-Target, Multi-Camera Tracking. In ECCV workshop on
Benchmarking Multi-Target Tracking.

[28] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and
Carlo Tomasi. 2016. Performance measures and a data set for
multi-target, multi-camera tracking. In European Conference on
Computer Vision. Springer, 17–35.

[29] Ergys Ristani and Carlo Tomasi. 2018. Features for Multi-Target
Multi-Camera Tracking and Re-Identification. CVPR (2018).

Long Presentation Session 4: Multimedia Object Tracking ICMR ’19, June 10–13, 2019, Ottawa, ON, Canada

260

http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831


[30] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. 2017.
Tracking the untrackable: Learning to track multiple cues with
long-term dependencies. ICCV (2017).

[31] Bima Sahbani and Widyawardana Adiprawita. 2017. Kalman
filter and iterative-hungarian algorithm implementation for low
complexity point tracking as part of fast multiple object tracking
system. In ICSET. 109–115.

[32] Samuel Schulter, Paul Vernaza, Wongun Choi, and Manmohan
Chandraker. 2017. Deep Network Flow for Multi-Object Tracking.
In CVPR. 6951–6960.

[33] Yantao Shen, Hongsheng Li, Shuai Yi, Dapeng Chen, and Xiao-
gang Wang. 2018. Person Re-identification with Deep Similarity-
Guided Graph Neural Network. In ECCV. Springer, 508–526.

[34] Hao Sheng, Jiahui Chen, Yang Zhang, Wei Ke, Zhang Xiong, and
Jingyi Yu. 2018. Iterative Multiple Hypothesis Tracking with
Tracklet-level Association. IEEE Transactions on Circuits and
Systems for Video Technology (2018).

[35] Jeany Son, Mooyeol Baek, Minsu Cho, and Bohyung Han. 2017.
Multi-Object Tracking With Quadruplet Convolutional Neural
Networks. In CVPR. 5620–5629.

[36] Siyu Tang, Mykhaylo Andriluka, Bjoern Andres, and Bernt Schiele.
2017. Multiple people tracking by lifted multicut and person
reidentification. In CVPR. 3539–3548.

[37] Yonatan Tariku Tesfaye, Eyasu Zemene, Andrea Prati, Marcello
Pelillo, and Mubarak Shah. 2017. Multi-target tracking in multiple
non-overlapping cameras using constrained dominant sets. arXiv
preprint arXiv:1706.06196 (2017).
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