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DENSE RELATION NETWORK: LEARNING CONSISTENT AND CONTEXT-AWARE
REPRESENTATION FOR SEMANTIC IMAGE SEGMENTATION

Yueqing Zhuang, Fan Yang, Li Tao, Cong Ma, Ziwei Zhang, Yuan Li, Huizhu Jia*, Xiaodong Xie, Wen Gao

National Engineering Laboratory for Video Technology, Peking University, Beijing 100871, China

ABSTRACT

Semantic image segmentation, which aims at assigning pixel-
wise category, is one of challenging image understanding
problems. Global context plays an important role on local
pixel-wise category assignment. To make the best of global
context, in this paper, we propose dense relation network
(DRN) and context-restricted loss (CRL) to aggregate global
and local information. DRN uses Recurrent Neural Network
(RNN) with different skip lengths in spatial directions to get
context-aware representations while CRL helps aggregate
them to learn consistency. Compared with previous meth-
ods, our proposed method takes full advantage of hierarchical
contextual representations to produce high-quality results.
Extensive experiments demonstrate that our method achieves
significant state-of-the-art performances on Cityscapes and
Pascal Context benchmarks, with mean-IoU of 82.8% and
49.0% respectively.

Index Terms— Image Semantic Segmentation, Context-
Aware Representation, Context-Restricted Loss.

1. INTRODUCTION

Semantic image segmentation is a fundamental computer vi-
sion problem whose goal is to assign category in pixel level.
This topic attracts broad interest for applications such as auto-
matic driving, remote sensing and medical image processing
which need accurate boundaries of objects.

To solve this problem, in previous decades, traditional
methods depend on pixel-level hand-crafted features [1] com-
bined with a classifier [2]. Driven by powerful deep neural
network in classification [3], pixel-level tasks like semantic
image segmentation have achieved great success by replac-
ing fully-connected layers with convolution layers in classi-
fier which enables network to generate image [4]. Currently,
state-of-the-art segmentation frameworks are mainly based on
fully convolutional network (FCN) [4], which can be roughly
divided into two parts, feature extraction and classification.

*means corresponding author(Email:hzjia@pku.edu.cn). This work is
partially supported by the National Key Research and Development Program
of China under contract No. 2016YFB0401904, Major National Scientific
Instrument and Equipment Development Project of China under contract No.
2013YQ030967, National Science Foundation of China under contract No.
61602011 and NVIDIA NVAIL program
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Fig. 1: Contextual ﬁepresentations by One—dibr)ection RNN in
Dense Relation Module. a) F} is produced from previous
feature map by a 1-skip GRU; b) F> whose size of receptive
field is 2 times than F; by 2-skip GRU;

Extracting a better feature representation is important
to distinguish pixels. A popular way to design discrimi-
native features is based on multi-scale technology which
can be roughly summarized as two categories, image-level
and network-level technologies. Image-level technology [5]
uses images of different scale to extract features where low-
resolution image contains the global contextual representation
and high-resolution image incorporates the local representa-
tion. Network-level technology [6] uses characteristics of
neural networks in which low layers attach importance to de-
tail information while high layers capture global information.
Besides, scale-aware operation [7, 8] in network is used to
extract multi-scale features.

For classification, different from traditional classification
methods such as SVM and Adaboost, structural classifica-
tions like CRF (conditional random field) [9] consider relat-
edness of pixels to refine results. The method in [10] refines
networks by end-to-end modeling, which integrates CRF into
convolutional network. Moreover, work [11] uses neural net-
work to estimate CRF. Methods mentioned above are estab-
lished in the factor of pair-wise consistency and relatedness.

However, these FCN-based methods [4, 5, 6, 7, 8] suf-
fers from the lack of suitable capacity for utilizing the global
contextual information due to the shrunken receptive field of
CNN [12]. Structural classifications [9, 10, 11, 13] aim at
solving pair-wise relation between pixels yet not extract suit-
able features to consider global context.

To handle this problem, we propose dense relation net-
work which uses RNN with different skip lengths in spatial
directions to enlarge receptive field and aggregate contextual
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Fig. 2: Visualization of DRN, which is composed by feature extraction subnet, dense relation module, feature aggregation part.

information of different scale (Fig. 1). Meanwhile, contex-
tual representations of the same label are more alike, Context-
Restricted Loss (CRL) is proposed to constrict the consis-
tency of contextual representations assigned to the same la-
bel. In this way, our approach achieves state-of-the-art perfor-
mances on Cityscapes dataset [14] and Pascal Context dataset
[15], with 82.8% and 49.0% in terms of mean-IoU respec-
tively.

2. METHODS

CNN has limited receptive field which will result in insuffi-
cient utilization of contextual information [12]. To solve this
problem, we make the best use of RNN to aggregate con-
text. The overall framework of our approach is shown in
Fig. 2, which can be divided into three parts, including feature
extraction, dense relation module and classification subnet.
Moreover, Online Hard Example Mining (OHEM) is used
to deal with unbalanced examples while Context-Restricted
Loss (CRL) is proposed to handle contextual consistency.

2.1. Dense Relation Module

In a CNN, the size of receptive field can roughly indicates
how much contextual information we use. The empirical
receptive field (ERF) of a convolutional network is limited
though theoretical receptive field (TRF) is larger than the
input image [12]. To fuse global context, global average
pooling is a good choice to learn global description [16, 17].
However, this strategy is insufficient for complex environ-
ment, directly forming a single representation for contextual
environment may lose the spatial relation and cause ambigu-
ity. Fusing contexts of different sub-regions [7, 8, 18] is a
way to get more powerful representations.

To resist the shrunken receptive field of CNN (the size of
ERF is smaller than TRF) and make full use of contextual in-
formation, we utilize Recurrent Neural Network (RNN) to ag-
gregate global contexts. Our proposed dense relation module

3) Dense Relation Module

Loss OHEM Loss
Concat ’ J

>l

1
1
1
1
1
1
1
1
1
]
1
]
1
1
1
1 .
! Context-Restricted
1
1
1
1
]
1
]
1
]
1
1
1
1
1
1
1

s
»
2 convs

Context-Aware Representation

4) Feature Aggregation 5) Prediction

uses four-direction RNNs to learn suitable contextual infor-
mation (Fig. 2) so that the receptive field is larger than CNN.
In order to aggregate different-scale contexts, skip length in
RNN is set as Fig. 1. Meanwhile, it’s more important to con-
sider context near the pixel rather than context far away from
the pixel (which cannot be ignored as well). To evaluate the
importance of different-scale representations, the output di-
mension of RNN (channel in feature map) is chosen by their
importance. Features of different scales are concatenated into
final features to be evaluated by a classifier, which composes
of two convolutions.

Therefore, our proposed network is formulated as below:

fom,n,s = (fim,na fim+As,n+As) (1)
fom,n = ]:(fim,n,la fim,n,Qa fim,n,él)
where we restrict the channel of contextual features as be-
lows:

|fim,n,1| = 2|fim,n,2| = 4|fim,n,4| (2)

where ? is a formation of Recurrent Neural Network (RNN),
m, n is the spatial coordinates in a feature map. F(-) is an ag-
gregation function, in which the channel of global and local
representations is restricted by Equation (2). Our dense rela-
tion module is composed by three scale submodules and four
paralleled GRUs in each one (Fig. 2). We choose GRU [19]
because it converges faster and can learn suitable receptive
field than vanilla RNN.

2.2. Network Architecture

Our proposed Dense Relation Network (DRN) is illustrated in
Fig. 2. Given an input image, we use ResNet38 [20] with di-
lated strategy [21] to extract features. The spatial size of net-
work output is 1/8 of the input image. On the top of the fea-
ture map, we use dense relation module to gather hierarchical
global contexts. We set skip lengths of DRN 1, 2, 4 to gather
contextual information of different scales. At last we con-
catenate contextual representations of different dimensional-
ity, which are followed by two convolution layers to generate
final prediction map.



2.3. Loss Function

Unbalanced samples in sematic image segmentation datasets
cause the preference on common categories that appears fre-
quently and less improvement on the hard objective at training
stage. In order to solve this problem, we adopt Online Hard
Example Mining [22] from [23] as below:

1
Lohem = , *
> Zf Z{y; = j and p;; < t}
N K (€)]
Z Zl’{y2 = j and p;j < t}logp;;

i
where K is the number of category c; in label space. Suppose
that we flatten an image into a one-dimensional pixel array
and there are [V pixels we shall predict. 7 is the mark number
identifying the pixel. p;; is the probability of the pixel; as-
signed to the category c;. y; is the target label of pizel;. Z(-)
is indicator function whose value is set to 1 if condition is sat-
isfied and is set to O when condition fails. As L pem discards
high-confidence loss according to threshold ¢, network would
pay more attention on hard example at the training stage.

Pixel-wise labeling depends on contextual information
because pixels make up objects. Pixels assigned to the same
label should have more consistency in high-level contextual
representations. Therefore, inspired by Center Loss [24], we
compose context-restricted loss for hierarchical contextual
representations as below:

W H _ 2
L= ) ZZ”fm"’;NkC’“”"’SH )

s=1,2,4m=1n=1 mn

where f,, s is hierarchical features out of DRN. £,,,,, is the
category of pixel, and Vi, is total number of category k.
C',s is the feature center of hierarchical environment for the
scale s and the category k. With these settings, contextual
representations for the category k,,,, are constricted.

To update contextual representations for different cate-
gories at each iteration, we formulate update function as fol-
lows:

W H A
t+1 _ ot .fmn,S'I{ k’mn :k}
Crs —%,ﬁ”ZZ N ©)

m=1 n=1 mmn

For a specific category k and contextual 8, contextual repre-
sentation Cfc, ; would be updated according to updating rates
7. Z(-) is indicator function.

‘We define our loss function as the sum of L ¢, and L,
which are weighted by A. The loss function for DRN is as
below:

L= them + )\Ecrl (6)

3. EXPERIMENTS

3.1. Datasets and Evaluation Protocol

We evaluate the performance of our DRN with CRL on
two widely used semantic image segmentation datasets,

Cityscapes [14] and Pascal Context [15]. Cityscapes con-
tains 5000 high quality pixel-level finely annotated images
(2975, 500, 1525 images for training, validation and test-
ing) and 20k coarsely annotated images, whose pixels can be
classified into 19 classes (eg. car, bus, person, rider) and 7
categories (eg. flat, object, construction). For comparison,
we test our methods on testing set over cityscapes benchmark
sever. Pascal Context consists of 4998 images for training
and another 5105 images for validation, whose pixels either
belong to background category or 59 semantic categories (eg.
bag, food, sign, ceiling, ground, and snow). As test set of
Pascal Context is not available, we directly test our result on
the validation set as [20]. For ablative studies, we use fine
training data of Cityscapes, and evaluate each part of our
proposed method on the fine validation set.

We report metrics as [4], which contains: /) Acc.: pixel
accuracy, which is the percentage of correctly labeled pix-
els. 2) mAcc: mean value of class-wise pixel accuracies. 3)
mloU: mean IoU score, which is the mean value of class-
wise intersection-over-union scores. Among these, mloU is
the most important metric which evaluates effectiveness of
method.

3.2. Implementation Details

We use MXNet [25] framework for DRN implementation.
The network is shown as Fig. 2, the number of filter in three
submodule of DRN is 512, 256, 128 according to Equa-
tion (2). Batch size in training stages is set to 8. The initial
learning rate is set to 5 x 10~% for first half epochs, and
decreases linearly to 5 x 10~° for last half epochs. For data
arguments, we randomly flip, resize images ranging from
0.55 to 1.3 and randomly crop it to (512, 544). Moreover,
A and 7 are set to 10~% and 5 x 1072 respectively. Inspired
by [26], which uses Alternating Training to train RCNN to-
gether with RPN, we train our final model in alternating ways.
Firstly train with fine data, then fine and coarse data, finally
fine data with 60, 30, 15 epoches respectively. Meanwhile,
we use [27] to replace interpolation in order to get accurate
boundary when testing. All of our results is done without
post-processing like CRF [9].

3.3. DRN Evaluation
3.3.1. Ablative Studies

DRN helps to learn powerful hierarchical features to clas-
sify each pixels. To evaluate DRN, we conduct experiments
with several setting, including different settings of skip length
and importance dimension reduction in dense relation mod-
ule. The results are tested on the validation set with single-
scale input. As listed in Table 1, DRN with single-skip length
works worse than DRN with multi-skips length, which means
the multi-scale representations is superior. With experimental
results, we find that different dimension reduction in GRUs of



different skip lengths would bring about significant improve-
ment in terms of mloU, exceeding network without dimension
reduction by 0.56% mloU. In summary, our proposed DRN
yields 79.69%/86.03% in terms of mIoU and mAcc, outper-
forming the baseline by 2.30%/3.87%.

Table 1: Investigation of Dense Relation Module on
Cityscapes validation. ’1°,2’,4” mean skip length in three
submodule over Dense Relation Module. °I’ means dimen-
sions reduce at different importance.

Network mloU mAcc Acc

Our ResNet38-based FCN  77.39  82.16 95.27
Our DRN(Skip-111) 78.76  85.07 96.21
Our DRN(Skip-222) 7898 85.15 96.23
Our DRN(Skip-444) 78.76  84.60 96.17
Our DRN(Skip-124) 79.13 8533 96.23
Our DRN(Skip-124-I) 79.69 86.03 96.25

The introduced CRL helps to embed context information
while not influencing learning process in the main master. We
use A to control the relative weights of OHEM and CRL. We
experiment with setting CRL weight \ between 10~ to 10~}
and show the results in Fig. 3. The baseline is Dense Rela-
tion Network without CRL. The ablation experimental result
is expected, small A would not influence learning proceeding
for master branch. Meanwhile, A will damage learning pro-
cess for master branch if weight X is too big. Only suitable A
would take effect at the training stage. The weight A = 10~*
yields the best performance, which outperforms the baseline
with an improvement of 0.39%,/0.39% (mIoU/mAcc).

mloU mAcc
80.50 £ 86.60
86.42
t 86.40
80.00 80.03
t 86.20
7830 - 86.00
79.00 f 85.80
t 85.60
78.50
t 85.40
78.00 85.20
1.0E-09 1.0E-07 1.0E-05 1.0E-03 1.0E-01
—o—mloU. —e—mAcc. weight A

Fig. 3: Quantitative analysis of weight \.
3.3.2. Comparison with state-of-the-art results

1) Cityscapes: Table 2 shows our proposed method is
superior than previous methods. Our methods yields 82.8%
mean-IoU over the benchmark!, which outperforms previous
state-of-the-art results by 1.6%, 0.6% in terms of mloU class
and category. Fig. 4 shows our visual comparison with pre-
vious state-of-the-art method, in which our method not only
can learn consistency among pixels but also extract suitable
contextual representations.

2) Pascal Context: Table 3 demonstrates that our method
gets performance 49.0% in term of mloU, which outperforms
previous state-of-the-art result by 0.9%.

Uhttps://www.cityscapes-dataset.com/benchmarks/

b) PSPNet

a) Origin Image

¢) Our Proposed DRN-CRL  d) Ground Truth

Fig. 4: Visualization comparisons with previous state-of-the-
art method [7]. Red bounding box indicates our superiority.
1) and 2) demonstrate our DRN can predict semantic image
as a whole. 3) shows that DRN predicts unitary plane. 4)
indicates contextual representations plays a important role on
distinguishment between rider and pedestrian.

Table 2: Results on Cityscapes testing set, iloU and iAcc are
instance-level intersection-over-union metrics respectively. i
means training using both fine and coarse data.

Method IoU class iloU class IoU category iloU category
CRF-RNN [10] 62.5 344 82.7 66.0
FCN [4] 65.3 41.7 85.7 70.1
DPN [13] 66.8 39.1 86.0 69.1
LRR [5] 69.7 48.0 88.2 74.7
DeepLabv2_CRF [28] 70.4 42.6 86.4 67.7
Piecewise [11] 71.6 51.7 873 74.1
Global-Local-Refinement [29]  77.3 53.4 90.0 76.8
TuSimple [30] 71.6 53.6 90.1 75.2
SAC_multiple [31] 78.1 55.2 90.6 78.3
PSPNet [7] 78.4 56.7 90.6 78.6
Our DRN-CRL 79.9 56.1 91.1 79.4
Segmodel [32] { 79.2 56.4 90.4 77.0
TuSimple_Coarse [30] { 80.1 56.9 90.7 77.8
Netwarp [33] { 80.5 59.5 91.0 79.8
ResNet38 [20] § 80.6 57.8 91.0 79.1
PSPNet [7] § 81.2 59.6 91.2 79.2
Our DRN-CRL 82.8 61.1 91.8 80.7

Table 3: Results on Pascal Context [15] validation set.

Method mloU(%) mAcc(%) Acc(%)
FCN-8s [4] 35.1 46.5 65.9
BoxSup [34] 40.5 - -
Context [35] 53.9 433 71.5
VeryDeep [21] 44.5 54.8 72.9

DeepLab_v2 [8] 45.7 - -
ResNet38 [20] 48.1 58.1 75.0
Our DRN-CRL 49.0 59.6 75.5

4. CONCLUSION

In this paper, we propose an effective DRN for semantic im-
age segmentation. Dense Relation Module aggregates multi-
scale features with dimension reduction at different impor-
tance to provide hierarchical contextual information. Exten-
sive experiments suggest that our proposed CRL will help
learn consistent representations. Significant improvement and
the state-of-the-art results on the Cityscapes dataset (82.8%
mloU) and Pascal Context (49.0% mlIoU) demonstrate the su-
periority of the proposed DRN-CRL.
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