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ABSTRACT

Multi-Object Tracking (MOT) is a challenging task in the

complex scene such as surveillance and autonomous driv-

ing. In this paper, we propose a novel tracklet processing

method to cleave and re-connect tracklets on crowd or long-

term occlusion by Siamese Bi-Gated Recurrent Unit (GRU).

The tracklet generation utilizes object features extracted by

CNN and RNN to create the high-confidence tracklet can-

didates in sparse scenario. Due to mis-tracking in the gen-

eration process, the tracklets from different objects are split

into several sub-tracklets by a bidirectional GRU. After that,

a Siamese GRU based tracklet re-connection method is ap-

plied to link the sub-tracklets which belong to the same object

to form a whole trajectory. In addition, we extract the track-

let images from existing MOT datasets and propose a novel

dataset to train our networks. The proposed dataset contains

more than 95160 pedestrian images. It has 793 different per-

sons in it. On average, there are 120 images for each person

with positions and sizes. Experimental results demonstrate

the advantages of our model over the state-of-the-art methods

on MOT16.

Index Terms— Computer Vision, Siamese Bi-GRU,

Tracklet Association, Multi-Object Tracking

1. INTRODUCTION

Multi-object tracking (MOT) is a significant task of identi-

fying each object and predicting their trajectories in a video

sequence. It has a wide range of applications in computer

vision, such as video surveillance, pedestrian flow analysis

and autonomous driving. MOT based methods are aiming to

address this problem by data association, which jointly op-

timize the matching process of bounding boxes detected by

detector within the inter-frames of a sequence. One of the

major applications of MOT focuses on pedestrian tracking.

The same individual has regular temporal or spatial cues in

video. For example, a person has slight appearance, veloc-

ity and direction changes for monocular sequence in a single
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Fig. 1. An example of our method: 1.Generating the tracklet

candidates by appearance and motion model. 2.Cleaving the

mistracked tracklets of a person. 3.Re-connecting the track-

lets of the same person.

camera. Therefore, MOT usually depends on the combination

of multiple cues (e.g. appearance, motion and interactions) to

associate the similar bounding boxes. Although the perfor-

mance is gradually improving at the MOT challenges [1], the

effectiveness of MOT is still limited by object detection qual-

ity, long-term occlusion and scene complexity. To solve this

sophisticated problem, previous works aim to extract the com-

petitive feature, design effective association metric and adopt

reliable detector.

Tracking-by-detection is becoming dominant solutions

for MOT , which compares feature and position of bound-

ing boxes to link similar objects into trajectories. The aim

of Tracking-by-detection is to search the optimal assignment

from multiple cues within a set of bounding boxes. The per-

son’s appearance is a convincing cue for data association.

Conventional algorithms tend to extract hand-crafted features.

Currently, deep neural networks such as convolutional neural

networks (CNN) and recurrent neural networks (RNN) have

achieved state-of-the-art performance in MOT [2–4]. CNN

extracts the feature of bounding box to represent the pedes-
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trian appearance. RNN is able to summarize the general

characteristics of images from the same tracklet. These as-

sociation methods are detection-to-detection or detection-to-

tracklet. However, for a given tracklet with long-term oc-

clusion, the detected pedestrian image may contain differ-

ent degrees of occlusions. Thus, feature extraction on these

occluded pedestrian images, even with subsequent complex

matching techniques, is often not quite reliable.

In this paper, we propose a novel tracklet association

to address the above problem by Siamese Bi-Gated Recur-

rent Unit(GRU), which is a tracklet-to-tracklet based method.

GRU is the long-term version of RNN. Our method can be

divided into three steps as illustrated in Fig. 1.

• Tracklet Generation: We firstly utilize the non-

maximum suppression (NMS) to eliminate redundant

bounding boxes and associate them with less or none

occlusion by appearance and motion cues to generate

the high confidence tracklet candidates.

• Tracklet Cleaving: Due to occlusion, one tracklet may

belongs to multiple persons. Therefore, we utilize bidi-

rectional GRU to split the tracklet into several sub-

tracklets and ensure that each sub-tracklet only belong

to independent tracked person.

• Tracklet Re-connection: We extract features from each

tracklet candidate or split sub-tracklet by siamese GRU.

The tracklets are matched by using temporal and spatial

cues and re-connected according to their similarity. At

last, we fill the gap among matched tracklets by poly-

nomial curve fitting to form the whole trajectory and

smooth every trajectory by smoothing function.

2. RELATED WORK

Multi-object tracking in videos has attracted great attention.

The performance of MOT improves gradually at the MOT

benchmark. Tracking-by-detection has become one of the

most popular tracking frameworks. Among the methods of

MOT, [2, 5–8] focus on designing an ingenious data asso-

ciation or multiple hypothesis. [9–11] rely on network flow

and graph optimization which are powerful approaches for

tracking. [12, 13] are presented to improve the tracklet asso-

ciation and tracklet confidence to achieve the tracklet task.

The inter-relation of targets have multiple cues in a sequence

including appearance, motion and interaction, which summa-

rized are by [4]. In addition, [14, 15] adopt the appearance

model of some early traditional algorithms such as color his-

togram to represent the image feature, or [6, 13, 16] utilize

covariance matrix or hand-crafted keypoint features. [17] uses

a novel multi-object tracking formulation to incorporate sev-

eral detector into a tracking system. [7] extends the multi-

ple hypothesis by enhancing detection model. The motion

model expresses the rule of object movement, which are di-

vided into linear position prediction [18] and non-linear po-

sition prediction [19]. The interaction model describes the

inter-relationship of different pedestrians in the same scene.

[15] designs the structural constraint by the location of peo-

ple to optimize assignment. Recently, deep neural networks

have been used gradually for tracking. [2, 4] train the CNN

on the basis of person re-identification to extract the image

features, and [18] utilizes the quadruplet loss to enhance the

feature expression. [3] builds the CNN model to generate vis-

ibility maps to solve the occlusion problem. Following the

success of RNN models for sequence prediction tasks, [20]

proposes social-LSTM to predict the position of each person

in the scene.

3. MULTI-OBJECT TRACKING FRAMEWORK

Our solution aims at long-term occlusion and crowd which

are difficult to track precisely. In this Section, the data asso-

ciation metric which generates tracklets from relative sparse

scenario as the tracklet candidate is described in Section 3.1.

We present how to estimate the tracklet reliability and split

the unreliable tracklets in Section 3.2. Section 3.3 gives the

traclets re-connection and association strategy, moreover, the

training method of our network is also discussed.
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Fig. 2. The structure of tracklets generation and the demon-

stration of the sets of Ct, Dt and T .

3.1. Tracklet Generation
Firstly, we execute a simple multi-object tracking algorithm

to generate tracklets. We choose the target which is easy to

track in order to produce the high-confidence tracklets. So we

denote the set of detection bounding boxes Dt (dkt ∈ Dt)and

the set of tracked objects candidates Ct (ckn ∈ Ct;n ≤ t, Ct =
Ct−1

⋃Dt−1), where dkt and ckt are k-th detection and can-

didate in frame t, respectively. To connect the candidate and

detection within inter-frames, we match the candidates ckt and

dkt in a bipartite graph with Hungarian algorithm [21]. The bi-

partite graph G = (V, E) whose node V are divided into left

part Ct ∈ VL and right part Dt ∈ VR, eij ∈ E is the edge

of cit and djt . The tracked objects are defined as 7 dimensions

[t, id, x, y, w, h, s] that contain the tracklet id by tracker, the

object time, the center position (x, y), width and height of the

bounding box, and the state of the tracklet. The state of track-

let includes ”tracked”, ”lost” and ”quitted”, which are similar

to Markov Decision Processes [5] (as described in Fig. 2).

The detail of state transition is introduced in Section 3.3. And
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(a) Tracklet cleaving Network (b) Tracklet Re-connection Network
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Fig. 3. The architecture of tracklet cleaving and re-connection network, (a) Cleaving the tracklets by bidirectional outputs of

GRU, (b) Re-connecting the tracklets by the features of siamese GRU.

then we obtain the set of tracklets T (τk ∈ T ) in the whole

sequence. The formulation of optimized graph is given by

argmin
∑
eij∈E

S(cit, dit)eij (1)

where S(cit, dit) indicates the cost function with cit and djt . In

addition, eij is the indicator parameter eij ∈ {0, 1}.The cost

function is defined as

S(cit, dit) = αFa(c
i
t, d

i
t) + βFm(cit, d

i
t) (2)

Fa(c
i
t, d

i
t) =‖ fcit − fdi

t
‖22, Fm(cit, d

i
t) =‖ p̂cit − pdi

t
‖22 (3)

where Fa(c
i
t, d

i
t) denotes the appearance cue which calcu-

lates the Euclidean distance and L2 normalized to measure

the similarity of cit and djt . Furthermore, the appearance fea-

tures fcit , fdi
t

of a person are created by Convolutional Neu-

ral Network (CNN). α, β are the weight coefficients of the

function. Fm(cit, d
i
t) indicates the motion cue, and the func-

tion compares the distance between the detection position pdi
t

and candidate prediction position p̂cit , which is defined in 4

dimensions [x̂, ŷ, ŵ, ĥ] that stand for the prediction of x, y-

coordinate, weight and height, respectively. The prediction

position by output of Long Short-Term Memory (LSTM) de-

pends on historical position as the input of LSTM. Some more

details of CNN and LSTM are discussed in Section 4.1.

3.2. Tracklet Cleaving
After tracklet generation, we have the coarse set of tracklet

T in sequence. However, the tracker in Section 3.1 may mis-

track the wrong person when two persons cross each other.

To guarantee the tracklet with the single person, we design a

bidirectional output Gated Recurrent Unit (GRU) to estimate

the tracklet reliability and cleave the false tracklets in time.

The reliable tracklets T + and unreliable tracklets T − are de-

fined as{
τk ∈ T + ∀i, j, rki , r

k
j ∈ τk, rki (id) ≡ rkj (id)

τk ∈ T − ∃i, j, rki , r
k
j ∈ τk, rki (id) 	= rkj (id)

(4)

where rki , r
k
j are the i-th, j-th element on tracklet τk. All

of the tracklets τk ∈ T are fed into the bi-GRU to distin-

guish whether the tracklet is reliable, or find out the split po-

sition of the unreliable tracklet. The tracklet cleaving net-

work (bidirectional-GRU) is shown in Fig. 3. First of all,

we utilize the CNN to extract the image features ϕk
c,i, i ∈

[1, Lk] from the tracklet. Secondly, all the features ϕk
c,i

is inputted the forward-GRU and backward-GRU respec-

tively. Both GRUs have the shared weights, and the out-

put is ϕk
g,i, i ∈ [−Lk,−1] ∪ [1, Lk], the positive and neg-

ative values stand for forward and backward feature from

GRU. And then, we calculate the adjacent vector distance

between the forward and the backward (e.g. length=10,

{ϕk
g,1, ϕ

k
g,−9}, {ϕk

g,2, ϕ
k
g,−8}, ... ) as a series of feature dis-

tance to combine a 1 ×(Lk − 1) vector ϕk
d:

ϕk
d,i =‖ ϕk

g,i − ϕk
g,i−Lk ‖22, i ∈ [1, Lk − 1]

ϕk
d = ([ϕk

d,1, ϕ
k
d,2, ..., ϕ

k
d,Lk ])

(5)

The algorithm calculates the distance ϕk
d,i between the
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Fig. 4. The explanation of the cleaving network: Top of the

dots indicate feature distribution for two persons, and the ar-

rows denote normal tendency with a single person and dis-

rupted tendency by each other. Bottom of the figure is the

unreliable tracklet corresponding to the top figure.

features from the left and the right to current position and

search the maximum disparity from these distances. The final

output of the cleaving network is a single vector ϕk
d , which

can find the most suitable splitting point by the position of

peak value. However, if all of the vector values are less than

the threshold, the tracklet includes the same person. The ex-

ample is described in Fig. 4. In this figure, the input is a unre-

liable tracklet (the length is 10) which includes the white coat

person at the front part and the blue coat person at the latter

part. The network calculates every adjacent feature distance

ϕk
d,i, i ∈ [1, 9] from left and right, and find the maximum dis-

tance to define the best splitting point(ϕk
d,4). So our cleaving

network not only distinguishes the tracklet availability, but

also cleaves the unreliable tracklet.

GRU is a long-term version of RNN. The advantage of

RNN is able to summarize the general characteristics with

the same person and eliminate occlusion in order to obtain

preferable feature expression. The pre-train model of cleav-

ing network is the half of the re-connection network (shown

in Fig. 3 (b)). The details of training strategy is described in

Section 3.3.

3.3. Tracklet Re-connection
We construct the Deep Siamese Bi-GRU to perform the cleav-

ing and re-connection tasks. To obtain the competitive feature

descriptor, we combine various losses to reduce the within-

class distance and enlarge the between-class distance simul-

taneously. Our network is designed with the verification loss

and identification loss at each GRU output. The loss is defined

as:

Lsum = Lglo + Lloc (6)

Where the Lglo and Lloc indicate the global loss and lo-

cal loss of the network, respectively. We use the contrastive

loss by Euclidean distance for the verification and the cross-

entropy losses in the multi-classification task for the identifi-

cation. The details of the losses are shown as:

E(ϕk1

f , ϕk2

f ) = y ‖ ϕk1

f − ϕk2

f ‖22
+ (1− y)max{0, (η− ‖ ϕk1

f − ϕk2

f ‖22)}
(7)

F (ϕk
f ) =

K∑
i=1

−pilog(p̂i), p̂i = softmax(ϕk
f ) (8)

where ϕk
f indicates the output feature of GRU ϕk

g after

fully-connected (FC) layer and ReLU. E(ϕi, ϕj) is the con-

trastive function, y ∈ {0, 1} is the label indicator, η is a

margin constant. F (ϕ) denotes the multi-classification cross-

entropy function. The representation of loss can be formu-

lated as follows:

Lglo = λvLv + λid(Lid1 + Lid2)

= λvE(ϕk1

f , ϕk2

f ) + λid(F (ϕk1

f ) + F (ϕk2

f ))
(9)

ϕk
f =

1

2Lk
(

−1∑
i=−Lk

ϕk
f,i +

Lk∑
j=1

ϕk
f,j) (10)

where ϕk
f is the temporal pooling [22] of each output of GRU.

Lloc = λloc vLloc v + λloc idLloc id (11)

Lloc v =‖ ϕk1

f,1 − ϕk1

f,Lk1
‖22 + ‖ ϕk2

f,1 − ϕk2

f,Lk2
‖22

− ‖ ϕk2

f,1 − ϕk2

f,1 ‖22 − ‖ ϕk1

f,Lk1
− ϕk2

f,Lk2
‖22 +δ

(12)

Lloc id =
∑

k∈k1,k2

(

−1∑
i=−Lk

F (ϕk
f,i) +

Lk∑
j=1

F (ϕk
f,j)) (13)

λ is the loss weight coefficient. Lv , Lid∗, Lloc v and

Lloc id denote the verification and identification loss of global

and local respectively. Lloc v is similar to triplet loss (refer

to [18]), including the disparity of head and tail of the track-

let, head between different tracklets and tail between different

tracklets. δ is the threshold of margin. Lloc id is the multi-

classification task for each output.

After training the re-connection network, we can cleave

or match the tracklets. For cleaving the tracklet, we calculate

the peak value of the feature which is concatenated by ϕk
d,i,

ϕk
d = ([ϕk

d,1, ϕ
k
d,2, ..., ϕ

k
d,Lk ]). For re-connecting the tracklet,

we match the temporal pooling features ϕk
f to compare the

distance between the tracklets.

Tracklet Association. This process is the tracklet assign-

ment from the set of tracklet T + after cleaving network. The

matching of tracklets τk ∈ T + are restricted previously by

temporal and spatial constraints. The constraint of matching

is shown as:

IOU(r̂iLi+Δti,j
, rj1) =

area(B(r̂i
Li+Δti,j

)∩B(rj1))

area(B(r̂i
Li+Δti,j

)∪B(rj1))
> 0 (14)
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Table 1. Results on the MOT16 test dataset (G: Generation C: Cleaving R: Re-connection A: Association)

Tracker MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDSw.↓ Frag↓ Hz↑
QuadMOT16 [18] 44.1 38.3 14.6% 44.9% 6388 94775 745 1096 1.8

EDMT [7] 45.3 47.9 17.0% 39.9% 11122 87890 639 946 1.8

MHT DAM [17] 45.8 46.1 16.2% 43.2% 6412 91758 590 781 0.8

STAM16 [3] 46.0 50.0 14.6% 43.6% 6895 91117 473 1422 0.2

NOMT [17] 46.4 53.3 18.3% 41.4% 9753 87565 359 504 2.6

AMIR [4] 47.2 46.3 14.0% 41.6% 2681 92856 774 1675 1.0

NLLMPa [12] 47.6 50.9 15.2% 38.3% 9253 85431 792 1858 18.5

FWT [17] 47.8 44.3 19.1% 38.2% 8886 85487 852 1534 0.6

LMP [2] 48.8 51.3 18.2% 40.1% 6654 86245 481 595 0.5

GCRA G(Ours) 47.4 41.4 14.4% 39.8% 7516 87219 1147 1156 7.5

GCRA G+C+R+A(Ours) 48.2 48.6 12.9% 41.1% 5104 88586 821 1117 2.8

where

r̂iLi+Δti,j
(x, y) = (τ̄ i(v) + μ) ·Δti,j

Δti,j = (rj1(t)− riLi(t))

s.t. rj1(t) > riLi(t), τ i(s), τ j(s) 	= quitted

(15)

B(·) is the bounding box of object [x, y, w, h]. τ̄ i(v) is the

average velocity of tracklet τ i, μ is velocity constant. riLi and

rj1 indicate the tail of tracklet τ i and the head of tracklet τ j re-

spectively. The states of tracklet node rki (s) include ”tracked”

”lost” and ”quitted”. The node is unmatched more than one

frame, which is transferred to ”lost” until the node is matched

by next frame node and transfer to ”tracked”.The node is quit-

ted when the node position will be out of the boundary. In

addition, tracklets also has states τk(s), which depend on the

last node state of this tracklet. For tracklet association, we

give up the quitted tracklets, and re-connection network as-

sociates the tracklets which meet the temporal-spatial condi-

tions. Lastly, we re-connect the tracklets which satisfy with

the constraint by the output ϕk
f .

4. EXPERIMENTAL RESULTS

4.1. Implementation Details

In our experiments, our networks consist of CNN, LSTM

and GRU. For tracklet generation, we train the Siamese-CNN

network of appearance model with ResNet-50, the images

are resize to 224 × 224 from the Re-identification dataset

Market1501 [23] and the output of CNN produced a 1024-

dimensional vector to describe the image. In addition , the

inputs of the LSTM network for motion model is a series of

4-dimensional vector [x, y, w, h] with a tracklet (the length

of input vectors L ∈ [3, 10]), and the LSTM output is the

prediction of the position and size [x̂, ŷ, ŵ, ĥ]. For tracklet

cleaving and re-connection, the model is a deep siamese bi-

GRU, which includes four hidden-layers and the maximum

length of GRU is 120 frames. The inputs of the GRU is a

series of 128-dimensional features by CNN which is a wide

residual networks (WRN) [24]. The outputs of the GRU

ϕk
g,i, i ∈ [−Lk,−1] ∪ [1, Lk] are also 128-dimensional vec-

tors, which are fed to FC network for verification loss and for

comparison of the corresponding features for classification

loss. We use the AdamOptimizer [25] to train our network.

The training dataset is extracted from dataset PathTrack [26]

and video re-identification dataset MARS [27].

Table 2. MOTA of each MOT16 sequences

Sequence 01 03 06 07 08 12 14

Static(s)&Moving(m) s s m m s m m

QuadMOT16 [18] 30.8 51.0 49.2 41.9 29.9 38.0 24.0
EDMT [7] 35.3 51.2 49.8 46.1 32.3 43.1 24.9

MHT DAM [17] 35.8 52.7 49.1 39.3 33.2 44.3 26.1
STAM16 [3] 35.7 53.8 48.4 38.0 32.3 42.3 24.6
NOMT [17] 34.2 53.0 51.3 44.9 36.7 39.3 23.5
AMIR [4] 37.8 53.8 49.2 45.5 32.5 40.4 29.4

NLLMPa [12] 30.7 56.4 49.8 40.7 33.3 43.3 23.3
FWT [17] 33.6 55.7 51.8 40.3 35.1 44.67 24.7
LMP [2] 39.9 56.1 52.3 43.1 33.8 43.7 28.8

Rank 1 1 10 3 2 8 3
GCRA(Ours) 42.5 56.7 35.9 44.1 35.4 39.6 28.3

4.2. Results of Multi-Object Tracking

Evaluation Metrics. The MOTChallenge Benchmark de-

pends on multiple evaluation index of trackers. These met-

rics [28] [29] include Multiple Object Tracking Accuracy

(MOTA), ID F1 Score (IDF1), Mostly tracked targets (MT),

Mostly lost targets (ML), False Positives (FP), False Nega-

tives (FN), Identity Switches (IDSw.), the total number of

Fragment (Frag) and Processing Speed (Hz).

MOTChallenge Benchmark. We evaluated performance of

our method on MOT16 [1]. The sequences of dataset are

captured from surveillance, hand-held shooting and driving

recorder by static camera and moving camera.

Result Comparison. We compare the state-of-the-art meth-

ods on MOT16. The result of MOT benchmark is presented

in Table 1. GCRA G is the tracklet generation in this paper,

and the GCRA is our final method. Obviously, our method

achieves higher performance of MOTA which is the primary

evaluation metric. The result of static camera sequence is bet-

ter than others especially, but moving camera is unsatisfactory

because the temporal and spatial constraints are not suitable

for it(as shown in Table 2).

5. CONCLUSION

We propose a novel tracklet association scheme to cleave and

re-connect the tracklets on crowd or long-term occlusion by

Deep Siamese Bi-GRU. The method calculates each output

of bidirectional GRU to search the suitable split position and
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(a) (b)
Fig. 5. Qualitative results on the MOT16 benchmark. (a): MOT16-01 (b): MOT16-03

match the tracklets to reconnect the same person. For training,

we extracted the tracklet dataset from existing MOT datasets

for training our frameworks. Our proposal has better perfor-

mance for static camera such as surveillance. The algorithm

achieves 48.2% in MOTA that approaches the state-of-the-art

methods on MOT16 benchmark dataset. The qualitative result

is shown in Fig. 5.
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